Doc. 463

SAULT COLLEGE OF APPLIED ARTS & TECHNOLOGY

SAULT STE. MARIE, ONTARIO

COURSE OUTLINE

Course Title:	STRENGTH OF MA	ATERIALS			
Code No.:	MCH 212		ossiuQ Adast		
Program:	CIVIL ENGINEER	RING	Floal		
Semester:	III	903 - 1008	+ A		
Date:	JUNE 1988	80% - 89% 70% - 79% 55% - 69%	A B O		
Author:	S. IENCO		я Х		
	tional time to com ts of the course.				
	or two problems on ditions. Notice vence, Each quiz	New:	are vorked under	X	2,
APPROVED:					<u>, E</u>
			t the end of the zes, mid-semester be up to the ins		

CALENDAR DESCRIPTION

SAULT STS. MARIE, ONTARIO

STRENGTH OF MATERIALS

MCH 212

COURSE NAME

COURSE NUMBER

PHILOSOPHY/GOALS:

The student will be introduced to basic strength of materials. The topics covered will include: the free body diagram, framework analysis, stress strain relationships, centroids, moment of inertia, shear force diagrams and bending moment diagrams for simple beams. These topics form a partial background for the eventual design of structural members.

METHOD OF ASSESSMENT:

Quizzes Mid-semester examination Final examination	30% 30% 40%
A+ 90% - 100%	
 $\begin{array}{cccccccccccccccccccccccccccccccccccc$	
R Repeat X Temporary grade, with extenuating	limited to situations circumstances, giving nal time to complete of the course.

- 1. Minimum acceptable grade is 55%.
- The in-class quizzes will cover one or two problems on a specific topic and are worked under examination conditions. Notice of a quiz is given during class at least two days in advance. Each quiz will carry equal weight.
- 3. Homework problems are assigned during lecture and the solution to selected problems is discussed subsequently. They are not graded.
- 4. If at the end of the semester your overall average of the combined quizzes, mid-semester test and final test is below 55%, then it will be up to the instructor whether you receive an "R" repeat or a rewrite. The criteria employed for arriving at that decision is class attendance, class participation and overall grade.

-2-

- 5. In case a rewrite is granted, it will be permitted only once and will be subjected to the following conditions:
 - a. It will cover the entire semester's course outline.
 - b. The maximum obtainable grade is "C".
 - c. The rewrite grade weight is 100%.
 - d. The student must score a 60% overall average on the rewrite in order to obtain a "C" grade.

PREREQUISITE: Applied Mechanics (MCH 100)

TEXT: Applied Strength of Materials Jensen/Chenoweth McGraw Hill

Definition of stress and strain
Stress-strain diagram
Hooke's law, modulus of elasticity
Allowable stresses, factor of safet
Poisson's ratio
Thermal stresses
Axial stresses in components formed from two materials

Thin Walled Vessels

- Definitions

Centroids and Momant of Insrtia

- Determination of the centre of area - Second moment of areas
 - Momenta of inertia of simple
 - composite areas
 - Radius of Gyration

Stresses in Simple Beams

Types of beams and loadings
 Calculation of beam reactions
 Shear force diagram
 Bonding moment diagrams
 Moving loads

- Flaxure formula

CIVIL AND ARCHITECTURAL ENGINEERING

MCH 212

	PERIODS	TOPIC DESCRIPTION
1.	10	Statics Review
		 Equilibrium equations Moment of force Determination of reactions Analysis of frameworks
2.	14	Stress Strain Relationships
		 Definition of stress and strain Stress-strain diagram Hooke's law, modulus of elasticity Allowable stresses, factor of safety Poisson's ratio Thermal stresses Axial stresses in components formed from two materials
3.	4	Thin Walled Vessels
		- Definitions - Formulas
4.	12	Centroids and Moment of Inertia
		 Determination of the centre of area Second moment of areas Parallel axis theorem Moments of inertia of simple and composite areas Radius of Gyration
5.	14	Stresses in Simple Beams
		 Types of beams and loadings Calculation of beam reactions Shear force diagram Bending moment diagrams Moving loads Flexure formula

MCH 212

6.	8	Torsion	
		- Twisting moment - Torsion formula - Polar moment of Inertia - Angle of twist of circular membe	
839			

COURSE OBJECTIVES

MCH 212

Statics Review

- 1. Determine reactions in frameworks.
- 2. Analysis of trusses by graphical method.
- 3. Analysis of frameworks by mathematical method (sections, joints).

Stress and Strain Relationships

1. Define stress.

- 2. Define tensile, compressive and shearing stresses.
- 3. Define ultimate stress, allowable stress and factor of safety.
- 4. Acquire a working knowledge of both imperial and SI units.
- 5. Solve problems using the direct stress formula.
- 6. Define strain.
- 7. Understand the relationship of the stress strain curve.
- Define elastic limit, yield point, ultimate strength, permanent set and percent elongation.
- 9. Define Hooke's Law.
- 10. Formulate the equation to determine deformation for members subjected to axial loads.
- 11. Solve problems in deformation for one material under axial load.
- 12. Solve problems in deformation for two materials in series under axial load.
- 13. Solve problems in deformation for two materials in parallel.
- 14. Identify Poisson's ratio.
- 15. Solve problems using Poisson's ratio.
- 16. Define thermal expansion and contraction.

17. Solve problems for temperature stress.

Thin Walled Vessels

- 1. Identify thin walled pressure vessels.
- 2. Define stresses in the longitudinal and circumferential direction.
- 3. Develop the stress formulas.
- 4. Solve simple problems for thin walled vessels.

Centroids and Moment of Inertia

- 1. Calculate centroids for simple and irregular rectangular, circular and triangular shapes.
- 2. Calculate centroids for built up structural shapes.
- 3. Identify moment of inertia.

COURSE OBJECTIVES

-7-

MCH 212

Centroids and Moment of Inertia (Cont'd)

- 4. Define section modulus and calculate it.
- 5. Define radius of gyration and calculate it.
- 6. Identify the flexure formula.
- 7. Solve simple problems using the flexure formula.

Stresses in Simple Beams

- 1. Identify point, concentrated and U.D.L. loads.
- 2. Identify different beam supports.
- 3. Calculate reactions for simple beams under various loading conditions.
- 4. Calculate shear in simple beams.
- 5. Calculate moments in simple beams.
- 6. Draw shear force and bending moment diagrams.
- 7. Solve for maximum bending moment.
- 8. Calculate shear and maximum bending moment for moving loads.

Torsion

- 1. Identify torque; acting and resisting.
- 2. Identify the torque formula.
- 3. Identify the maximum unit shearing stress formula.
- Identify the formula for polar moment of inertia of solid and hollow shafts.
- 5. Identify the angle of twist formula.
- 6. Solve problems using the above formulas.